

Series Datasheet standexelectronics.com

HE Series Reed Relays

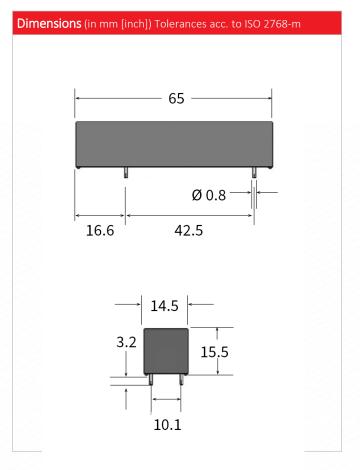
- Features: High Voltage Relay, Through-Hole / Axial Wire Option, Compact Design, Special Pin-Outs
- > Applications: High Voltage Test Sets, Cable Testers, Medical **Equipment & Others**
- ➤ Markets: Medical, Test and Measurement & Others

Part Description: HEQQ-QXQQ-QQQ						
Nominal Voltage	Contact Quantity & Contact Form	Switch Model	Pin Out			
05, 06, 12, 24, 48	1A, 1B, 2A	69, 83	02, 03, 150, 300			

Customer Options	Switch Model		
Contact Data (@ 20°C)	69 (A-Dry)	83 (A-Dry)	Unit
Contact Material	Rhodium	Rhodium	
Rated Power (max.) Any DC combination of V&A not to exceed max. rated power	50	50	W
Switching Voltage (max.) DC or peak AC	10,000	7,500	V
Switching Current (max.) DC or peak AC	3.0	3.0	А
Carry Current (max.) DC or peak AC	5.0	5.0	А
Contact Resistance (max.) @ 0.5V & 10mA, Measured with 40% Pull-In Overdrive	150	150	mOhm
Breakdown Voltage (min.) (upon request)* According to EN60255-27	15	15	kVDC
Operating Time (max.) Including Bounce, Measured w/40% Pull-In Overdrive	3.0	3.0	ms
Release Time (max.) Measured without Coil Suppression	1.5	1.5	ms
Insulation Resistance (min./typ.) Rh<45%, 100V Test Voltage	10 ¹²	10 ¹²	OHE
Capacitance (typ.) @ 10kHz across open Switch	1	1	pF

Series Datasheet standexelectronics.com

HE Series Reed Relays

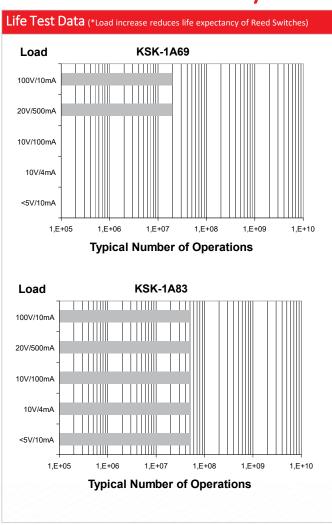

Coil Data (at 20°C)		Coil Voltage (VDC)		Coil Resistance (OHE)	Pull-In Voltage (VDC)	Drop-Out Voltage (VDC)	Coil Power (mW)	Coil Inductance (mH)
Contact Form	Switch Model	Nominal	Max.	Typical (± 10 %)	Max.	Min.	Nominal	Nominal
1A	69	05						
		12		110	9.0	1.0	1,31	
		24		465	18.0	2.0	1,24	
	83	05						
		12		260	9.0	1.0	554	
		24		1050	18.0	2.0	554	
18*	69	05						
		12		260	9.0	1.0	554	
		24		1	18.0	2.0	548	
	83	05						
		12		250	9.0	1.0	351	
		24		1	18.0	2.0	378	
2A	83	12		140	9.0	1.0	1	

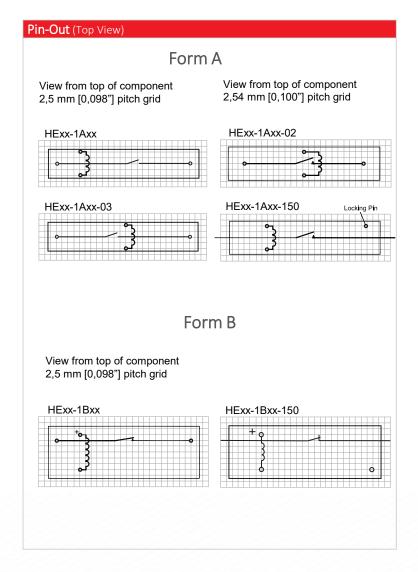
The Pull-In, Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per °C

* Re-closure of Form B may occur if the max. coil voltage is exceeded. Coil polarity on Form B must be observed. Pin 2 is positive.

Relay Data (@ 20°C)		Unit	
Dielectric Strength Coil/Contact (min.) According to EN60255-27	20	kVDC	
Insulation Resistance Coil/Contact (min.) Rh<45%, 200V Test Voltage	10 ¹²	OHE	
Capacitance Coil/Contact (typ.) @ 10 kHZ	1.2	pF	
Shock Resistance (max.) 1/2 sine wave, 6md, 3-axis	50	g	
Vibration Resistance (max.) 10 – 2,000 Hz	20	g	
Operating Temperature (max.) Surrounding of the relay's housing	-20 to 70	°C	
Storage Temperature (max.) Surrounding of the relay's housing	-35 to 95	°C	
Soldering Temperature (max.) 5 sec. max.	260	°C	
Washability Aqueous rinse suitable. Proper drying necessary.	Fully Sealed		

Glossary Contact Form					
Form A	NO = Normally Open Contacts SPST = Single Pole Single Throw				
Form B	NC = Normally Closed Contacts SPST = Single Pole Single Throw				




Version 03 01 Aug 2025 Page 2 D. Stastny

Series Datasheet standexelectronics.com

HE Series Reed Relays

Please note: All technical specifications on this series datasheet refer to the standard product range. Modifications in the sense of technical progress are reserved. For general information only. For more specific information, please consult the product datasheet, available upon request.

This series datasheet could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These change will be incorporated in future revisions.

For deviating values, most current specifications and products please contact your nearest sales office.

Handling & Assembly Instructions

- Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay. Protective circuits need to be used.
- External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
- Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
- ➤ Wave soldering: maximum 260°/5 seconds.

Version 03 Page 3 01 Aug 2025 D. Stastny